THE FLORIDA STATE UNIVERSITY

COLLEGE OF ARTS AND SCIENCES

CONVECTIVE RAINFALL REGIONS
IN PUERTO RICO

By

MATTHEW M. CARTER

A Thesis submitted to the
Department of Meteorology
in partial fulfillment of the
requirements for the degree of
Master of Science

Degree Awarded:
Summer Semester, 1995



The members of the Committee approve the thesis of Matthew M. Carter defended on

July 6, 1995.

James B. Elsner
Professor Directing Thesis

Jon E. Ahlquist
Committee Member

Henry Fuelberg
Committee Member



Dedication

This thesis is dedicated to my parents, who not only opened my eyes to the world of
educational and career opportunities, but also provided me with the freedom to choose my

path in life. My love always.

iii



Acknowledgements

I am grateful to my advisor, Dr. Elsner, for his support and guidance, without which this
work would not have been accomplished. T am further grateful to my committee members,
Dr. Jon Ahlquist and Dr. Henry Fuelberg, for their insight on significance testing and
convective rainfall predictors. Dr. LaSeur was a valuable resource on convective forcing in
the tropics as well as offering input on statistical matters.

I would also like to acknowledge the assitance of Dr. Kevin Kloesel in retrieving hourly
rainfall data from NCDC. Joey Comeaux and Will Spangler, both from NCAR, assisted in

locating surface and upper air data.

v



Contents

List of Tables

List of Figures

Abstract
1 Introduction
2 Data

3 A Factor Analysis Model
4 Procedures
4.1 Correlation Matrix . . . . . . .. .. . oL oL
4.2 Upper Bound on the Number of Factors . . . . ... ... ..
4.3 Orthogonal Rotation . . . . .. ... ... ... ... .....
5 Regionalization
5.1 Selecting the Number of Factors . . ... ... ... ... ..
5.2 Diurnal Variability . . ... ... ... 0000,
6 A Rainfall Prediction Scheme
6.1 Ordinary Least-Squared Regression Model . . . . . . ... ..
6.2 Data Set and Selection of Variables . . . . ... ... ... ..
6.3 Building a Linear Regression Model . . . . .. ... ... ..
6.4 Results. . . . . . .
6.5 Cross Validation . .. ... ... .. ... .. 0.
7 Summary and Conclusion
Appendices

2.1 Hourly Rainfall Data . . . . . .. .. ... ... .. .. ....
2.1.1 Rainfall Climatology . . . .. ... ... ... .....
2.1.2  Rainfall Frequency . . . ... ... ... ... .....

2.2 Surface and Upper Air Data . . . . . ... ... ... ... ..

A List of Hurricane Hours Removed

vii
viii

ix

—

0 =1 ~1 Ut Ot

10

16
16
19
22

24
24
29

32
33
33
36
38
42

44

47

47



B Hourly Rainfall Climatology
C Frequency of Rainfall Events
References

Biographical Sketch

vi

49

61

73

75



10

List of Tables

Correlation matrix for all twenty-two stations in Puerto Rico, July 1973
through June 1988. . . . . . . . . . L

Percent of hours that stations recorded no rainfall, and the mean hourly
rainfall in inches . . . . . . . L oL

Data are for potentially rainy hours. Percent of hours that stations recorded
no rainfall, and the mean hourly rainfall in inches . . . . . ... .. ... ..

Normalized common factor loadings from the common factor analysis after a
varimax orthogonal rotation. Factor loadings are divided by the sum of the
absolute value of loadings within each factor. This value is multiplied by 100
to give the normalized factor loading. . . ... ... ... .. ... ... ..

Threshold loadings for orthogonally rotated, normalized six factor analysis.
Boldface values are primary loadings with magnitudes of 7.50 or greater. The
rest of the values are loadings with magnitudes between 5.00 and 7.49. . . .
Threshold loadings for orthogonally rotated, normalized two factor analysis.
Boldface values are primary loadings with magnitudes of 7.50 or greater. The
rest of the values are loadings with magnitudes between 5.00 and 7.49. . . .
Correlation coefficients of an out of sample OLS regression model with n = 1
predictor variable. The predictand is the twelve hour eastern super-region
rainfall total ending at 8 p.m. . . . . . . ... L L oo
Components of optimal predictor variable vector xopt . . . . . . . . .. ..

OLS regression model results. All errors are in inches. . . . .. .. ... ..

Hurricanes, tropical storms, and named tropical depressions removed from
thedataset.. . . . o . . o L

vii

17

18

19

25

26

30

37

38

42



List of Figures

Topography of Puerto Rico. Enclosed white region is elevation between 1,000
feet and 2,999 feet. Fnclosed shaded region is elevation above 3,000 feet. . .

Stations in Puerto Rico that record rainfall on an hourly basis. . . . . . ..

Scree plot showing the leading sixteen eigenvalues of the matrix R — ¥. The
dashed line represents the 95% significance line from a Monte Carlo simula-
tion of white noise. . . . . . . .. . L

Composite of the pairwise plots of unrotated factor loadings from a factor
analysis model with m =6 factors. . . . . . ... .. ... oL

Composite of the pairwise plots of rotated factor loadings from a factor anal-
ysis model with m =6 factors. . . . . . . ... oL oo Lo

Geographic regionalization of Puerto Rico based on a factor analysis (with
an orthogonal rotation of the loadings) of summertime convective rainfall. .

The number of rainfall events, July 1973 through June 1988, is plotted for
each hour of the day. Hours 24 through 30 represent “wraparound” times
corresponding to midnight through 6 a.m. A rainfall event is defined as any
amount greater than a trace that was recorded at any station within a region.
Rainfall associated with tropical cyclones is excluded. . . . . . .. ... ..

viii

21

22

23

28



Abstract

Geographic regions of covariability in hourly precipitation over the island of Puerto Rico are
exposed using factor analysis. It is argued that the data are consistent with a common factor
model when an orthogonal rotation is applied to the factor loading matrix. We suggest that
Puerto Rico can be divided into six regions with each region having a similar covariance
structure of summer season convective rainfall. These six regions can be further grouped
into a western area and an eastern area based on contrasting diurnal rainfall signatures. This
study is believed to be one of the first attempting geographic regionalization of precipitation
on a convective scale.

We attempt to construct a ordinary least-squared linear regression model to forecast for
twelve hour precipitation for the eastern area. By progressively adding a component to the
predictor variable vector based on optimal correlation, we obtain a model equation that no
longer improves forecasts after five predictors. We construct our linear regression model
using an out of sample approach. The linear regression equation we obtain from these five
predictor variable components is more accurate for predicting daytime convective rainfall

than is climatology or persistence.
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Chapter 1

Introduction

Puerto Rico is an island territory of the United States located in the Caribbean Sea bounded
by 65.6° W t0 67.25° W and 17.9° N to 18.5° N. The Commonwealth of Puerto Rico contains
a brick-shaped main island, measuring 180 kilometers by 65 kilometers, and five nearby
smaller islands. Although only 8,897 square kilometers in area, smaller than the state of
Connecticut, Puerto Rico is topographically diverse (Figure 1). Much of the interior of
the main island is a mountain range, with its spine running east-west along its length.
The highest peak in this range, Cerro de Punta, is 1,338 meters (4,389 feet) above sea level.
Foothills comprise the area surrounding this central range, and give way to a coastal plain in
the northern and southern parts of the island (Pico 1974). In the east and the west, foothill
valleys extend finger-like to the sea. There exists a divide between the central range, or
Cordillera Central, and a small but steep range to the northeast. This isolated range, Sierra
de Luquillo, contains the peak El Yunque, which acts as an important convection point for
summertime rainfall.

Puerto Rico’s varying topography over a small area in the Caribbean Sea lead to stark

land, sea, and air interactions between the months of May and September. Fasterly trade
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Topography of Puerto Rico

o rainfall recording stations

1,000 feet - enclosed white
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Figure 1: Topography of Puerto Rico. EnF(l:glu(;eszed white region is elevation between 1,000 feet
and 2,999 feet. Enclosed shaded region is elevation above 3,000 feet.

winds in the tropics prevail over Puerto Rico during much of the year. During the summer,
San Juan, which lies on a narrow peninsula on the northern coast, experiences a wind from
the east, northeast, or southeast about sixty percent of the time.

Vertical motion associated with the sea breeze often leads to rainfall. FEasterly trades
reinforce the sea breeze on the eastern coast of the island, and may penetrate several
kilometers inland. On the western coast, the sea breeze must overcome the prevailing
easterlies in order to move ashore (Riehl 1954).

In addition, the rugged interior topography induces rain. On the windward side of moun-
tains, moist air is forced up the slope where it cools and condenses leading to orographic
precipitation. Interior mountain peaks also provide focal points of convection. Insolation
heats the peaks much faster than the valleys below, which are shaded by the mountains
(Pico 1974). Resulting towering cumulus and cumulonimbus clouds are common over the

interior during summer days. Morevoer, differential heating between the mountains and



the valleys leads to daytime upslope winds as the peaks heat and force air upward. Noc-
turnal drainage flow occurs as the air cools and sinks down the slopes at night (Ray 1986).
Interaction between prevailing easterlies, sea breezes, and upslope winds may force rainfall
in the interior of the island.

Waves that originate off the west coast of Africa and propagate in the tropical trade belt
also bring rainfall to Puerto Rico. These are primarily summertime phenomena, and number
between fifty and seventy annually. Not all waves bring rain to Puerto Rico, and some may
in fact inhibit mesoscale diurnal rainfall effects. Other waves develop into depressions,
tropical storms, and hurricanes, which bring copious amounts of rain.

The tropical upper-tropospheric trough (TUTT) is a climatological feature that exists
over the tropical Atlantic during the summertime. Cold core, upper level cyclones (Kousky
and Gan 1981, Kelley and Mock 1982) often originating along the TUTT axis can influence
rainfall over Puerto Rico (Frank 1970). These upper level lows with their direct thermal
circulation and absence of dissipative mechanisms can last for several days to weeks. Precip-
itation amounts associated with these lows are proportional to their vertical extent, which
on occasion reach down to the surface (Frank 1970).

Fassig (1916) conducted one of the earliest studies of rainfall in Puerto Rico. He com-
pared the duration, frequency, and intensity of rainfall in San Juan with that of a mid-
latitude city, Baltimore. He found that tropical rain is of shorter duration and greater
frequency than mid-latitude rain. Excessive rainfall events (greater than one inch per hour,
or two and a half inches per day), occur with greater frequency at San Juan, and last for a

longer time, than in Baltimore. For such events, however, Fassig reported that Baltimore



exhibited higher rainfall rates than did San Juan.

Ray (1928) studied hourly rainfall frequencies in San Juan for the period 1905 to 1927.
During the summer months, he reported a primary maximum in the hourly rainfall fre-
quency in the late afternoon, with a secondary maximum during the early morning hours.
This closely mirrors what is revealed in our data record, as we shall see in Chapter Two.
During the winter, Ray found that the frequency maximum occurs for the duration of the
overnight hours, while there is a pronounced minimum during the afternoon. For rainfall
amounts, there is considerably less hour to hour variation during the winter than during
the summer, although the rainfall amount extrema correspond to the frequency extrema
temporally.

In this study, we seek to develop prediction algorithms for forecasting convective rainfall
in Puerto Rico. Tropical convective rainfall is on the scale of a few kilometers at most and
may miss an eight inch diameter rain gauge, despite the fact that it is raining nearby. The
features that force this rainfall may exist over a small region surrounding the gauge, and
force convective precipitation over an entire summer. It is useful to identify these regions
so that we may capture common forcing mechanisms among the stations. In this paper,
we accomplish a regionalization of Puerto Rico based upon its summertime convective
rainfall using an analysis-of-variance technique known as common factor analysis. Because
this study concerns small spatial and temporal scales of tropical rainfall, results may be of
value in calibrating precipitation measurements taken from the Tropical Rainfall Measuring

Mission (TRMM) satellite (Simpson 1988) currently planned for launch in 1997.



Chapter 2

Data

2.1 Hourly Rainfall Data

The National Climatic Data Center (NCDC) maintains records for twenty-two stations in
Puerto Rico that record rainfall on an hourly basis (Figure 1). San Juan contains the most
extensive hourly rainfall record on the island. Its data record began on 1 January, 1967. All
of the other stations began their hourly rainfall records in either 1971 or 1973. So that all
stations have uniform data record length, the data record for this study begins on 1 July,
1973 and ends on 30 June, 1988.

Diurnal convective and sea breeze rainfall events are most prevalent during the summer
months. African easterly waves pass over the island during the summer months and cold core
upper level cyclones are most numerous during this time. Summer rainfall regimes in Puerto
Rico are either forced on the mesoscale, or propagate over the island, generally speaking,
from the east. Rare exceptions are hurricanes and tropical storms, which will be discussed
shortly. During winter, mid-latitude systems contribute to rainfall during the months of

October through April. For the purpose of this study, which is to find common regions of
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Figure 2: Stations in Puerto Rico that record rainfall on an hourly basis.

rainfall variability over Puerto Rico based upon summertime influences, we restrict interest
to the months of May through September. The total length of each station’s data record is
55,080 hours.

Hourly rainfall amounts are in tenths of an inch, except for San Juan and Benavente-
Hormigueros, which have a resolution of one-hundredth of an inch. Missing hourly rainfall
amounts are neglected from the data set. Hurricanes, tropical storms, and named tropical
depressions are removed from the data set as well. Appendix A lists these storms and
the corresponding hours that are removed from the data set. Developed tropical cyclones
are associated with intense rainfall. Since regionalization is attempted with an eye toward
prediction, such storms are omitted for the following two reasons: 1) These storms are
monitored with particular attention by the National Hurricane Center. 2) Considerable
skill exists in several statistical and dynamical models for forecasting tropical cyclones. The

predictive scheme developed in this study for rainfall in Puerto Rico is a linear regression



model. Because statistical and dynamical hurricane models have long exceeded the standard

of linear regression, it is felt that inclusion of tropical cyclones in this study is unnecessary.

2.1.1 Rainfall Climatology

Appendix B shows hourly rainfall climatologies for each of the stations in the data set. The
maximum rainfall amount that occurred at each hour during the months of May through
September is plotted as the top curve. All of the rainfall amounts for each hour are ordered
greatest to least. The smallest value for each hour is zero. The second curve represents the
99.9th percent value for each hour, the third curve the 99th percent value, and the bottom
curve the 97th percent value. Note that the values on the abscissa reach 30. Hours 24
through 30 are “wraparound” times, and are the same as hours midnight through 6 a.m.
This reveals any continuity in the rainfall climatology over the nighttime hours.

The curves begin to flatten by the 97th percentile. This shows how quickly rainfall
amounts fall from the maximum values. Rainfall events of one inch or more occur infre-
quently, and the most common rainfall amount is zero, as we shall see later. In many of the

station records, over ninety percent of the hourly rainfall values are zero.

2.1.2 Rainfall Frequency

Appendix C shows the frequency of rainfall events at each hour for the same data set.
Again, hours 24 through 30 on the abscissa are wraparound times. A rainfall event is any
hour that a station records rainfall greater than a trace. The number of rainfall events for

each hour is plotted by the black curve.



Two principal types of curve behavior emerge from these graphs: 1) Stations with low
amplitude maxima that exhibit small hourly variation in the frequency of events (e.g. San
Juan WSFO), and 2) stations that exhibit large amplitude, mid-afternoon maxima with
relative minima in the early morning and overnight hours (e.g. Dos Bocas). The low
amplitude stations lie in the eastern two thirds of the island, from San Lorenzo eastward.
The exceptions are Cubuy, Gurabo, and Gurabo Substation which lie in the shadow of
El Yunque, a strong orographic rainmaker. Stations west of San Lorenzo exhibit high
amplitude afternoon maxima. Many of these stations lie near Cordillera Central where
strong convective forcing takes place. The dichotomy of the rainfall frequency curves is an

important consideration in regionalizing the island, as we shall see in Chapter 5.

2.2 Surface and Upper Air Data

Hourly surface data for San Juan used in developing a prediction algorithm were retrieved
from the National Center for Atmospheric Research (NCAR) via the Cray Y-MP8/864
supercomputer Shavano. In developing a prediction scheme, we chose a representative
sample of randomly selected hours from the years 1977 through 1981. We retrieved all
hourly surface data for the period 1 May, 1977 through 30 September, 1988 from NCAR
data set ds472.0.

The San Juan Weather Service Office is the only station in Puerto Rico that has an
extensive upper-air data record. These data are collected twice daily, at 0000 UTC (8 p.m.

AST) and 1200 UTC (8 a.m. AST) and are found in NCAR data set ds390.1. Our data set



consists of all upper air soundings for the same time period as the surface data set.



Chapter 3

A Factor Analysis Model

Factor analysis is a process by which we attempt to describe a correlation structure of several
variables in terms of factors. Factors are for the most part intangible entities that may not
be observed, but represent regions in which several variables are a) highly correlated with
each other, and b) uncorrelated with other variables. In this study, each of the factors
represents a region of rainfall, and each of the variables represents a station. By applying
factor analysis to the correlation matrix, we seek to identify m < p (where p is the number
of stations) regions of rainfall that contain stations that exhibit a similar rainfall pattern
with each other and a different pattern with all other stations (Johnson and Wichern 1982).

In practice factor analysis is not this clean. A station may be highly correlated with two
separate groups of stations or not correlated to any. In such instances (and they exist in this
study as we shall see later), ultimate determination of the regions must fall on somewhat
subjective means. Factor analysis provides an objective guide to regionalization, not the
final map itself.

Following the discussion by Johnson and Wichern (1982), each factor is broken into

two components, common factors, fi ... f,, which represent the unobservable explanation

10
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for the groups of high correlation, and specific factors, € ...¢,, where p is the number of
additional sources of variation (stations). The relationship between the common factors,

the specific factors, and the observations is given as

Xi—m = i+ A+ -+ nfn+a

Xo—p2 = nfi+Anfot+- 4+ Xonfm + e (1)

Xp _:up = Aplfl + Aprp‘I' R Apmfm ‘|‘€p

If ¢ ranges from 1 to p, and j ranges from 1 to m, then X; is the rainfall vector for station
?, i is the mean, and Ay, is the loading for vector X; on factor m. Common factor number
Jis f;, and ¢ is the specific factor for station vector X;. In matrix format, the relationship
given by Equation Set 1 is

X -—p=AF+e¢, (2)

where it is assumed that the expected values of €, F, and X — p are zero. It is also assumed
that each common factor has unit variance, the common factors are independent of each
other, and the common factors and the specific factors are mutually independent.

In contrast to the commonly employed principal component analysis, factor analysis
starts with the assumption of an underlying basic model for the data. This model is given by
Equation Set 1. The factor loadings may be described in terms of the population covariance
matrix by the following relation,

T =AAT 4+ O, (3)



12

where 3 is the p X p population covariance matrix, A is the p x m matrix of factor loadings
relating the common factors f;’s to the observed variables z;’s, and ¥ is the p X p matrix
of covariances of the specific factors ¢;’s. Since we are assuming a common factor model for
the factor analysis, the specific factors are also assumed to be independent of one another
so the matrix W is diagonal.

In this study we compute the factor loadings as
A=TA™z, (4)

where I" and A are the eigenvectors and eigenvalues, respectively, of the dispersion matrix
(R — W¥). The matrix R is the p x p sample correlation matrix computed from the data set
consisting of p=22 stations and n=>55,080 hours for each station. Although the common
factor model given by Equation 1 applies for loading matrices described by a population
covariance matrix X (Equation 3), it also applies for loadings described by a population
correlation matrix. We standardize X and approximate population correlation matrix o
with sample correlation matrix R (Johnson and Wichern 1982). Loading matrix A is a
p X m matrix, I is a p X m matrix, and A is an m X m diagonal matrix. By choosing m = p,
I' and A are square matrices composed of all p eigenvectors and eigenvalues respectively.
For m < p, I" and A are rectangular matrices that reveal the eigenvectors and eigenvalues
for the first m modes.

Individual elements of sample correlation matrix R are given by

Sii\/skk7
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where the s; is the sample covariance between stations ¢ and & and is given by

siv = ) (i — ) (e — Tn), (6)

where z; and xj are rainfall amounts at hour j for stations ¢z and k respectively, and where
Z; and 7 are the respective sample means of stations 7 and k. Here we try two approaches
to estimate the factor loadings with nearly identical results. The first is noniterative, and it
assumes the specific variance for each station is equal to a constant times the squared mul-
tiple correlation coeflicient. The other uses an unweighted least-squares iterative technique
to refine these initial estimates.

The latter approach is shown in the following example. AAT 4+ ¥ will be a px p product

matrix for all m < p. For m = 1, suppose our p X p correlation matrix is,

1 4 .6
4 1 3
6 3 1

We set this matrix equal to AAT + ¥ as given by Equation 3
=M, +9¢1 40=2A11da1 .60 = A\jgAsg
L=2 + 2 .30 = AgiAs
L= A3+
We can pick any pair of equations that share a loading. We choose,
60 = A11A31

30 = A21A31
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so that
3
= (%)
- 0.5A11
Substituting this expression for Agq,
A0 = 0.5A11M g
80 = A}
+.8904 = Aqy
Now we can solve for 1
¢1 = 1- /\%1
= 1-0.8
= 0.2

The other loadings can be determined through substitution. This approach is iterative in
that the International Mathematical and Statistical Library (IMSL) subroutine FACTR,
which performs the actual calculations, uses a numerical algorithm to solve for the loadings
in FEquation 3.

Our factor analysis model bears resemblance to the popular principal component analysis

(Dyer 1975, White et al. 1991, and Lyons and Bonell 1994). The difference between the
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two methods is that factor analysis allows for specific factors (or specific variance), while
principal component analysis does not. Perhaps the best way to understand specific variance
is through an example. A certain type of forcing may influence rainfall variability for a group
of stations. These stations have this forcing in common. There may be an additional, very
localized, forcing on one of the stations in this group. In principal component analysis,
the variance explained by this forcing is distributed among all of the stations, both inside
and outside of the group. This variance is found in all of the loadings. This may lead to
a poor regionalization of stations since the sum of localized effects will be spread over all
modes. In factor analysis, the variance due to the localized forcing goes into the specific
variance. The variance due to that localized forcing does not manifest itself on any of
the loadings. The variance the stations share is called communality. Stations that have
communality comprise a region and represent a single factor. Unlike principal component
analysis, the specific variance is excluded from common factors and is not hidden in the
loadings. Optimally, we would like to have the number of factors such that the specific
variance is minimized; that is, we would like to have as much of the variance as possible be
explained by communality. This difference between factor analysis and principal component
analysis may only be superficial for variables such as monthly sea level pressures or 50 kPa
heights, but could be important for variables, like rainfall, where very local effects can have

a significant influence on individual station variability.



Chapter 4

Procedures

4.1 Correlation Matrix

Since the correlation matrix forms the backbone of our study, it is presented in Table 1.
With the exception of Ponce correlated with San Sebastian, all of the correlation coefficients
are positive. We note that z; is very small for all 7 since each station vector is dominated
by zeros (Table 2).

In fact, all z;’s are smaller than the resolution of the rain gauge. Since all values of z;;
and zy; are positive or zero, values of (z;; — Z;)(zg; — Zx) will only be negative when one
station records no rainfall and not the other. If station 7 is reporting zero rainfall, values
of (z;; — ;) are of an order of magnitude smaller than rain gauge resolution, or O ~ 1072
inches, and negative. When a station records rainfall, this value is of an order of at least
10! inches, and is positive. So when one station records rain while the other remains dry,
it contributes negatively to the summation in the covariance equation (Equation 6). When
summed over the entire record, we may find that the equation gives a negative value if one

station has many zeros and a small mean, while the other has few zeros and a larger mean.

16



8861 Qunf

ysnoiyy €261 A ‘0o1y 03Ieng Ul suolje)s om)-£jusmy [[8 10J XIIJeW UOIJR[RII0T) T 9[qe],

1.000 .075 .063 .065 .056
.075 1.000 .309 .129 .085

.063
.065
.056
.018
.066
.019
.026
.027
.037
.040
105
.060
.058
.010
.081
273
072
.062
031
.026

1331

105 .
.080
257
.108
.098
177
.065
183
120
161
.106
.054
.082
.054
110
.033
.076
.107

.309 1.000 .133 .105
129 .
.085
.062
478
078
067
A11
.064
.184
.080
296
136
.058
.108
.053
.080
.038
.048
102

.000 .268
268 1.000

.018
.062
.080
.360
.249

.360 .249 1.000
.084 .096
193 147
443 217
298 .146
262 220
244 143
074 126
.056 .072
.074 .053
173 132
231 332
.033 .069
.120 .081
.028 .003
.180 .128
246 .110

0551
176 .
459
221
427
231
.052
.039
.017
.192
.240
.008
114
.004
237
151

.066
478
257
.084
.096
.055
.000

.019
.078
.108
193
.147
176
110

110 1.000

.052
107
.079
125
117
432
113
.082
.100
073
072
.034
.071
077

.565
.184
135
.032
.092
.071
.304
125
.020
.053
.032
205
.156

.026 .027
067 .111
098 177
443 298
217 146
459 221
.052 .107
215 .565

215 1.000 .341
.341 1.000
302 1981
178 145 .
.057 .044
.034 .085
.036 .063
204 232
201 .126
.016 .030
107 .078
.015 .032
202 .176
193 167

1 - Benavente-Hormigueros
2 - Botijas 1
3 - Botijas 2
4 - Cubuy
5 - Gurabo
6 - Las Piedras
7 - Negro-Corozal

.037
.064
.065
262
220
427
.079
.184
302
.198
.000

~a ToJdALL JUALL VY DL U

.040
184
183
244
143
231
125
135
178
.145
.196

196 1.000

.049
.054
.018
.186
275
.026
.109
.005
.255
127

.090 1
118 .
.063
.098
175
.023
191
.008
175
171

.105
.080
120
.074
126
.052
117
.032
.057
.044
.049
.090
.000

.060
.296
161
.056
.072
.039
432
.092
.034
.085
.054
118
.056

056 1.000

072
.045
130
130
097
.055
.037
052

8 - Ouque
9 - Pena Pobre-Naguabo
10 - Pico del Este

11 - San Lorenzo
12 - Cayey

.077
.084
.057
.050
.024
.049
.094

.058
136
.106
074
.053
.017
113
071
.036
.063
018
.063
072
A11

.111 1.000
.037 1
.049
078 .
.030 .
149 .
.020
.060

13 - Cerro Maravilla
14 - Corozal Substation
15 - Dos Bocas

.010
.058
.054
173
132
.192
.082
304
204
232
.186
.098
.045
.077
.037
.000

020
056
018

.198
.140

.081
.108
.082
231
332
.240
.100
125
201
126
275
175
130
.084
.049
147

.147 1.000
.116 1.000
.110 .063 1.000
.009 .045 .001 1.000
.145 .042 .090 .008 1.000
113

273
.053
.054
.033
.069
.008
073
.020
016
.030
.026
.023
130
057
078
.020
116

.072
.080
110
120
.081
114
.072
.053
107
.078
.109
191
.097
.050
.030
.056
110
.063

.062
.038
.033
.028
.003
.004
.034
.032
015
.032
.005
.008
.055
.024
.149
.018
.009
.045
.001

.031
.048
.076
180
128
237
.071
.205
202
176
255
175
.037
.049
.020
.198
.145
.042
.090
.008

.026
.102
.107
.246
110
151
077
.156
.193
167
127
171
.052
.094
.060
.140
113
.005
.066
.041
.087

.005 .066 .041 .087 1.000

16 - Fajardo
17 - Gurabo Substation
18 - Maricao
19 - Ponce

20 - San Sebastian

21 - Yabucoa

22 - San Juan WSFO

L1
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Percent Percent
Station zeros  Mean Station zeros  Mean
Benavente-Hormigueros 79.5 .009 Cayey 80.7 .007
Botijas 1 72.3 .007  Cerro Maravilla 78.7 011
Botijas 2 81.0 .007  Corozal Substation 87.7 .007
Cubuy 75.8 .012  Dos Bocas 89.4 .010
Gurabo 86.2 .008  Fajardo 87.8 .008
Las Piedras 92.1 .010  Gurabo Substation 92.8 .008
Negro-Corozal 90.8 .007  Maricao 89.1 .013
Ouque 83.5 .011  Ponce 94.4 .004
Pena Pobre Naguabo 78.6 .011  San Sebastian 78.0 .014
Pico del Este 60.8 .019  Yabucoa 91.2 .010
San Lorenzo 87.7 .011  San Juan WSFO 92.3 .006

Table 2: Percent of hours that stations recorded no rainfall, and the mean hourly rainfall
in inches

This is the occurrence between San Sebastian and Ponce. The covariance between these
two stations is a very small negative value.

Stol (1972) and Sharon (1974) prescribe removing all hours in which none of the stations
records rainfall. If it is raining somewhere on the island at a particular hour, then that
hour is considered to be “potentially rainy.” We constructed a new (n x p) data matrix
that includes only potentially rainy hours. Table 3 shows that the percent of hours with no
rainfall over the entire island decreases from between two to nine percent for each station
from the original data set. The mean for each station more than doubles, but still lies an
order of magnitude smaller than gauge resolution. For this reason, we consider all of the
hours in our data set, not just potentially rainy ones. The covariance structure of our factor
analysis does not differ significantly from an analysis performed using only potentially rainy

hours, as we shall see in Chapter 5. Again, all values of (2;; — Z;)(2x; — Z;) are positive
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Percent Percent
Station zeros  Mean Station zeros  Mean
Benavente-Hormigueros 76.2 023 Cayey 75.9 .018
Botijas 1 70.4 .019  Cerro Maravilla 74.0 .029
Botijas 2 77.9 .019  Corozal Substation 84.0 .020
Cubuy 71.0 .030 Dos Bocas 85.5 026
Gurabo 82.5 .020  Fajardo 84.0 .020
Las Piedras 84.7 .027  Gurabo Substation 88.5 .020
Negro-Corozal 87.2 .019  Maricao 84.5 .034
Ouque 75.6 .030  Ponce 93.3 .010
Pena Pobre Naguabo 72.2 .029  San Sebastian 71.8 037
Pico del Este 53.0 .050  Yabucoa 84.6 027
San Lorenzo 80.0 .028  San Juan WSFO 82.0 .016

Table 3: Data are for potentially rainy hours. Percent of hours that stations recorded no
rainfall, and the mean hourly rainfall in inches

except at an hour when station 7 records rainfall and station & does not.

4.2 Upper Bound on the Number of Factors

A key decision to make in any factor analysis (also in principal component analysis) is
how many factors are necessary to best describe the covariance relationships among the
variables. Since there are no optimal procedures for doing this across all applications of
factor analysis, we approach the problem with an emphasis on trial and error. To get
started, however, we use a Monte Carlo procedure that provides an upper bound on the
number of statistically significant factors.

The Monte Carlo approach begins by determining the spectrum of eigenvalues (Adata)

for the matrix cdata — gdata _ gdata g o a5 a scree plot in Figure 3. (The superscript
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“data” refers to the original data set.) As is typical, the first several eigenvalues explain
a large portion of the total variance with latter ones explaining a decreasing amount. We
next generate twenty-two surrogate rainfall records by randomly permuting the 55,080 hours
within each station and compute, as before, a correlation matrix R3“T, Then, as was done
with the original data, we determine the spectrum of surrogate eigenvalues (AS™T) from

CSUT — RSWT _ @SUIT - Repeating the entire procedure 100 times gives us

the matrix
a distribution of surrogate eigenvalues, and we choose the magnitude of the 5th largest
eigenvalue for each mode as the 95% significance level (Overland and Preisendorfer 1982,
Elsner and Tsonis 1991).

This 95% significance level is shown as the dashed line in Figure 3. The leading nine
original data eigenvalues exceed this significance level and thus provide an upper bound on
the number of factors to allow in our final analysis. Since scrambling the rainfall amount for
each hour destroys the serial correlation in the data, the significance level represents white
noise. Because we are only concerned with using these results as a guide, a more elaborate
test against red noise was not considered.

In summary, having nine eigenvalues exceed the significance level indicates that we
should choose no more than nine factors in our analysis. In other words, each rainfall
recording station does not by itself represent a unique rainfall region. Stations may be
grouped into regions, as long as the number of regions does not exceed nine. The significance

testing provides an important “first guess” as to how many factors we should consider in

our analysis.
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Figure 3: Scree plot showing the leading sixteen eigenvalues of the matrix R — ¥. The

dashed line represents the 95% significance line from a Monte Carlo simulation of white
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Figure 4: Composite of the pairwise plots of unrotated factor loadings from a factor analysis
model with m = 6 factors.

4.3 Orthogonal Rotation

A useful way to diagnose a factor analysis is to examine pairwise plots of the factor loadings.
As an example Figure 4 shows the composite of pairwise plots for m=6 (A; versus A;; for
i=1,m—1and 7 =14,m). In other words, the loading of a station on factor ¢ is plotted
against the loading of that station on factor j. Many of the points cluster either along the
axis or near the origin indicating linear independence of the loadings (simple structure).
There are, however, many points that lie off the axis indicating stations that are included
in more than one common factor (complex structure). Because of the linear independence
of common factors, interpreting the results from factor analysis (or principal component
analysis) is easier when simple structure is present (Richman 1986).

To improve the simple structure, the loading matrix is multiplied by an orthogonal
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Figure 5: Composite of the pairwise plots of rotated factor loadings from a factor analysis
model with m = 6 factors.

matrix T. This linear transformation of the loading matrix has the property of conserving
the inner product of the loading vectors (columns of A) and geometrically represents a rigid
rotation about the coordinate axis (Kreyszig 1993). We choose a varimax rotation and
perform the calculations using IMSL (1987) subroutine FROTA.

Pairwise plots of the orthogonally rotated factor loadings for m = 6 are shown in Figure
5. The points better align along the coordinate axes indicating improved simple structure.
This shows that the stations are loading on one particular factor and not on any others.
There are exceptions, denoted by the stray points in quadrants one and four. These points
are relatively few suggesting that a different type of rotation, such as oblique (Jolliffe 1986),

will not be better in improving simple structure.



Chapter 5

Regionalization

5.1 Selecting the Number of Factors

Using the white noise significance test and orthogonal rotation of the previous section as
guides we now proceed to regionalize Puerto Rico. We apply the factor analysis model
with orthogonal rotation for each m in the interval 1 through 9 and carefully examine the
factor loadings. We want to find an m for which all 22 stations optimally load on only
one factor. No value of m between 1 and 9 allows each station to load on one and only
one factor. Although no choice of m revealed perfect simple structure, m = 6 optimally
loads the stations onto common factors, as we shall see later. Table 4 shows the common
loadings for m = 6. These loadings are normalized by taking the absolute value of each
factor loading for each station, summing these values for each station, dividing the original

loadings by this sum, and multiplying by 100 (Equation 7)

;\ij =100 x /\U/Z |/\”| (7)

i=1
It is the magnitude of the factor loadings that will determine the regions, since it is con-

tributing to the common variance. Communality is defined by the sum of the squares of

24
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Station Factor 1 Factor 2 Factor 3 Factor 4 Factor5 Factor 6

1 -1.89 0.18 -1.29 16.41 -1.12 2.25
2 0.41 19.15 -3.44 1.53 3.50 4.72
3 1.97 9.96 -0.10 3.09 5.55 10.95
4 15.77 -2.06 0.24 0.04 -3.16 2.25
5 3.38 -0.32 -1.58 3.99 -10.20 -1.72
6 11.54 -3.94 -0.95 -5.40 -11.80 1.40
7 -3.04 21.88 -0.91 1.37 0.37 -0.21
8 1.11 -0.67 27.26 -1.06 2.23 -2.47
9 15.58 -4.43 2.77 -3.45 -4.95 -1.45
10 6.79 -0.92 24.44 -0.86 4.21 -0.70
11 4.64 -2.52 1.48 -3.68 -13.44 1.83
12 4.30 2.48 -1.86 -0.86 -1.30 17.34
13 -0.85 1.74 -2.72 10.65 -1.23 5.26
14 -3.27 17.27 -0.29 0.82 0.00 -2.84
15 3.34 5.00 -1.15 8.26 5.02 -5.42
16 -0.19 -0.85 12.51 -1.88 -4.02 -3.33
17 1.30 -0.04 -1.91 5.40 -12.62 0.86
18 -3.45 0.14 -0.19 17.46 -2.72 1.07
19 -0.19 -0.53 -2.20 3.17 -0.48 16.75
20 3.82 1.06 -0.72 7.83 4.47 -7.14
21 -0.56 -2.06 6.54 -2.35 -6.89 5.42
22 12.62 2.80 5.49 0.43 -0.74 4.62

Table 4: Normalized common factor loadings from the common factor analysis after a
varimax orthogonal rotation. Factor loadings are divided by the sum of the absolute value
of loadings within each factor. This value is multiplied by 100 to give the normalized factor
loading.

the factor loadings (Johnson and Wichern 1982), so negative factor loadings will contribute
positively to the common variance. The importance of the sign is that within a particular
factor, stations of common sign should be grouped. This will become apparent when we
consider thresholds.

Since we are looking for stations that load heavily (large magnitude) on a particular
factor, we can choose a threshold to define a primary loading as one that has a normalized

magnitude of 7.50 or greater. Similarly, we define a secondary loading as having a magnitude
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Factor
Station 1 2 3 4 5 6
1 16.41
2 19.15
3 9.96 5.55 10.95
4 15.77
5 -10.20
6 11.54 -5.40 -11.80
7 21.88
8 27.26
9 15.58
10 6.79 24.44
11 -13.44
12 17.32
13 10.65 5.26
14 17.27
15 5.00 8.26 5.02 -5.42
16 12.51
17 5.40 -12.62
18 17.46
19 16.75
20 17.46
21 6.54 -6.89 5.42
22 12.62 5.49

Table 5: Threshold loadings for orthogonally rotated, normalized six factor analysis. Bold-
face values are primary loadings with magnitudes of 7.50 or greater. The rest of the values
are loadings with magnitudes between 5.00 and 7.49.

between 5.00 and 7.49. Anything below magnitude 5.00 is not considered sufficient to be
included in the factor. Loadings that exceed 5.00 are shown in Table 5. Boldface values are
primary factor loadings and the rest are secondary loadings. Note that within each factor
column, all of the primary factor loadings are of the same sign.

As indicated by the separation of primary loadings in Table 4, and by the appearance of
simple structure in Figure 5, there is good clustering (grouping) of stations into common fac-

tors. There are, however, some exceptions. Botijas-2 (station 3) and Las Piedras (station 6)
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surpass the primary loading threshold on two separate factors. We dub these “freeloading”
stations since they are free to load on more than one factor. Yabucoa (station 21) does
not surpass the primary loading threshold for any factor. We call this a “homeless” station
since it cannot be placed in any region based upon our primary threshold values. So for six
factors, the sum of freeloading and homeless stations is three. We call this the “nonsingu-
larity” sum. If every station loaded on one, and only one, factor this sum would be zero
and would represent an ideal factor analysis for which little subjectivity would be required.
As mentioned above, we applied factor analysis for m = 1 to 9, where m is the number
of common factors. We found that m = 6 provided the smallest nonsingularity sum. The
number of white noise significant modes gives us our upper bound for m, and the minimiza-
tion of the nonsingularity sum gives us our exact number of factors in our regionalization
of Puerto Rico.

The regionalization using six common factors is shown in Figure 6. Repeating, we have
used the common factor model with an orthogonal rotation of the loading matrix and a
minimization of the nonsingularity sum to achieve this map. The regions are divided based
on primary loadings on each station. For the three nonsingular stations we have drawn the
line on (or very close) to their locations.

We have tested the stability of this regionalization with respect to different temporal
subdomains (not shown). This was done by repeating this factor analysis procedure on
two separate data subsets. The first data subset consisted of only daytime hours and the
second consisted only of potentially rainy hours. For both subsets the procedures resulted

in a nearly identical regionalization as that given by the full data set. This lends confidence
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Figure 6: Geographic regionalization of Puerto Rico based on a factor analysis (with an
orthogonal rotation of the loadings) of summertime convective rainfall.
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that the factor analysis we performed is representative of the underlying rainfall regions.

5.2 Diurnal Variability

Since our goal is to develop a prediction model for forecasting convective rainfall over the
island, we examine the diurnal variability of precipitation in each of the six regions. We
do this by considering the empirical probability of measurable precipitation for each hour.
Figure 7 shows the frequency of rainfall (excluding rainfall from tropical cyclones) for each
hour of the day for each of the six regions. Factors 2, 4, and 6 exhibit high amplitude maxima
in the late afternoon and minima between midnight and 4 a.m. These three factors comprise
the regions in the western two-thirds of the island. Factors 1, 3, and 5 are characterized by
low amplitude maxima occurring in the early morning and minima taking place between
8 p.m. and midnight. These factors correspond to regions on the island’s eastern third.
Factors 1, 3, and 5 also show much less hourly variability than factors 2, 4, and 6. Based on
their hourly frequency signatures, then, we can further separate the island into two larger
regions: A western “super-region” and an eastern “super-region.”

We could have initially divided Puerto Rico into two regions by choosing m = 2 and
performing a factor analysis on the data. The normalized primary and secondary factor
loadings for such an analysis are shown in Table 6. The nonsingularity sum for the m = 2
analysis is 12, compared to 3 for the m = 6 analysis. We can only place ten stations using
our original threshold criteria. The rest must be placed subjectively. Even if we place

stations that only satisfy the secondary loading criteria (normalized loadings greater than
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Factor
Station 1 2
1
2 12.76
3 9.66
4 8.95
5 6.71
6 10.16
7 14.13
8 7.24
9 9.73
10 8.49
11 8.50
12 5.23 5.66
13 5.20
14 10.40
15 5.28
16 5.71
17 6.74
18
19
20
21 5.82 1.28
22

Table 6: Threshold loadings for orthogonally rotated, normalized two factor analysis. Bold-
face values are primary loadings with magnitudes of 7.50 or greater. The rest of the values
are loadings with magnitudes between 5.00 and 7.49.

5.00), we still have six stations that cannot be placed by our objective procedures.

By choosing the number of factors that minimized the nonsingularity sum, we reveal six
distinct regions of convective rainfall patterns. Upon examining the frequency of rainfall for
the six regions (Figure 7), we see a dichotomy emerge. Had we begun with the assumption
of dichotomy, the factor analysis would have not yielded six regions, and we would have

had poor guidance in regionalizing most of the stations.
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Figure 7: The number of rainfall events, July 1973 through June 1988, is plotted for each
hour of the day. Hours 24 through 30 represent “wraparound” times corresponding to
midnight through 6 a.m. A rainfall event is defined as any amount greater than a trace
that was recorded at any station within a region. Rainfall associated with tropical cyclones
is excluded.



Chapter 6

A Rainfall Prediction Scheme

Here we attempt to build a prediction algorithm for daytime convective rainfall. On many
conditionally unstable days, convective rainfall is on a small enough scale that it may occur
in the vicinity of a recording station, but never reach the rain gauge. On another day
with similar convective instability, the station may actually record rainfall. In both cases,
rainfall occurred due to similar forcing, but in the data record, it only rained on one day.
This aspect of diurnal convective rainfall makes it very difficult to predict. This is especially
true in Puerto Rico during the summer because variation in such variables as temperature,
dew point, and wind direction is small on a diurnal basis.

By regionalizing the island, we capture stations that exhibit similar rainfall signatures,
which reflect shared convective forcing, and group them within a boundary. A convective
rain shower that misses one gauge within a region may be recorded by another. Treating a
small region as a single collection point is more reflective of the prevailing forcing.

We saw in Chapter 5 that the six regions of the island comprise larger “super-regions”
based on their diurnal rainfall frequency signatures. San Juan lies within the eastern super-

region, and we attempt to develop our prediction model for this area. For our predictor

32
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variables, we use rainfall data for the eleven recording stations within the eastern super-
region, and the surface-based and upper-air data from the San Juan Weather Service Fore-
cast Office (WSFO). The San Juan WSFO is the station in Puerto Rico that has the most

extensive hourly surface data record, and the only one that retrieves upper air data.

6.1 Ordinary Least-Squared Regression Model

We select a set of a priori predictor variables denoted by the vector x. We also choose a
dependent variable g to be the predicted outcome. We employ a linear regression model of

the form
y=f(z) (8)
and

f(@) = Bo+ Brer + Bz + ... Buan (9)

where n is the number of predictors used in the regression, and j3; is the ordinary least-
squared (OLS) determined coefficient for predictor variable z; (Johnson and Wichern 1982).
The least squares solution for the column vector of coefficients is # = (XTX)"'1XTy. X is
the matrix of predictor variables, and the superscripts 7" and —1 denote matrix transpose

and inverse respectively (Elsner and Schmertmann 1994).

6.2 Data Set and Selection of Variables

We begin by assembling a data set of 420 randomly selected hours from the period 1 May,

1977 through 30 September, 1981. We seek to predict daytime convective rain, so our
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predictor data is taken at 1200 UTC (8 a.m. AST). This is the time at which we initialize
the model. The dependent data is taken up to 0000 UTC (8 p.m. AST). Therefore, the
predictor data set of 420 randomly selected hours will only include 8 a.m. hours between 1
May, 1977 and 30 September, 1981, and the dependent data occurs twelve hours later.

The surface-based components of the predictor variable vector x are

e Dew point. This measure of atmospheric moisture content at the surface has little
diurnal variability. In the data record, the dew point is between 71° I and 79° F for

94 percent of all hours.

¢ Temperature. This surface variable also shows little day to day variation. For 98

percent of all hours, the temperature fell between 70° F and 90° F.

¢ U and V wind components. FEasterly winds prevail over the island during the
summer months. In the morning at San Juan, winds have a southerly component due
to the land breeze propagating offshore. During the afternoon, the wind takes on a
northerly component as a sea breeze develops and moves onshore (Ruffner and Bair
1978). Changes in wind speed and direction may have a significant effect on diurnal

rainfall in Puerto Rico (Gere Gallup, personal communication).

¢ Sea level pressure anomaly. We average the sea level pressure for each hour of the
day throughout the entire data period and then subtract the appropriate mean from
each pressure record in the data set. For instance, the first record is for 19 August,
1980 at 8 a.m. AST. The average sea level pressure for 8 a.m. is subtracted from

the sea level pressure for 19 August, 1980 at 8 a.m., and we get a sea level pressure
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anomaly. In this way, the semi-diurnal pressure oscillation is removed from the data

set.

¢ Twelve hour sea level pressure anomaly tendency. We take the twelve hour
trend of the sea level pressure anomaly described above. For this data set, the ten-

dency measured is for 8 p.m. previous day through 8 a.m. current day.

¢ Past one hour rainfall total. The rainfall amounts for all eleven rain gauges in the
eastern super-region for the past hour are summed. For this data set, the recorded

hour is 7 a.m. through 8 a.m.

o Past three hour rainfall total. The rainfall amounts for all eleven eastern stations

are summed over the past three hours, 5 a.m. through 8 a.m.

¢ Past twelve hour rainfall total. Rainfall amounts are summed over the past twelve

hours, 8 p.m. previous day through 8 a.m. current day.

¢ Percent of stations recording rainfall, past one hour. The percent of stations in
the eastern super-region that reported rainfall between 7 a.m. and 8 a.m. is included.
This predictor variable gives insight into the coverage of rainfall over the eastern third

of the island during the past hour.

The upper air predictor variable is

¢ 70 kPa relative humidity. The 70 kPa relative humidity value for the current 1200
UTC sounding is included in the independent variable vector x. The atmosphere over

Puerto Rico during summer is almost always convectively unstable (Noel LaSeur,
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personal communication), yet it does not rain every day. A column of deep moisture
may be critical in initiating rainfall in a convectively unstable atmosphere (Fuelberg
and Biggar 1994). Relative humidity values of less than twenty percent are coded as
a single, phantom value in the data record, so only values of twenty percent or greater
contribute to the construction of the model. While we recognize that this may be a
limiting factor on the optimization of our model’s performance, particularly on very

dry days, we shall see later that 70 kPa relative humidity is not selected as a predictor.
We choose g, the variable for which we are predicting, to be one of the following;:

¢ Twelve hour rainfall total. Rainfall between 8 a.m. (time of initialization) and 8

p.m. is summed over all stations in the eastern super-region.

¢ Three hour rainfall total, nine hour lead. We sum rainfall between 5 p.m. and
8 p.m. over all stations. The lead time of our forecast is nine hours, the elapsed time

between 8 a.m. and 5 p.m.

¢ Six hour rainfall, six hour lead. We sum rainfall between 2 p.m. and 8 p.m. over
all stations. The intent of six hour lead time is to predict convective rain over the

afternoon hours.

6.3 Building a Linear Regression Model

In building a OLS model according to Iiquation 9 using a subset of predictor variables in x,

we begin by individually correlating each of the eleven components of x with twelve hour



37

Independent Variable Correlation Coeflicient
Dew point -0.0960
Temperature -0.1900
U wind component 0.0000
V wind component 0.0000
Sea level pressure anomaly 0.1329
12 hour sea level pressure anomaly tendency 0.1564
70 kPa relative humidity 0.1659
Past one hour rainfall total 0.2256
Past three hour rainfall total 0.2425
Past twelve hour rainfall total 0.2584
Percent of stations recording rainfall 0.2747

Table 7: Correlation coefficients of an out of sample OLS regression model with n = 1
predictor variable. The predictand is the twelve hour eastern super-region rainfall total
ending at 8 p.m.

rainfall total, our initial choice for . This is done by building a linear regression equation
with n = 1. We use an out of sample approach by removing one of the 420 randomly selected
hours for which we from the predictor data set, and then build the model predicting for the
1 corresponding to the hour we removed. Table 7 shows the correlation coefficient between
7 and observed rain, ¥, based on our out of sample, one variable OLS model.

The highest correlation coefficient in Table 7 is in boldface, and it corresponds to the
percent of stations in the eastern super-region that recorded rainfall during the past hour
(7 a.m. to 8 a.m.). This is the single best variable for predicting an eastern super-region
twelve hour rainfall total ending at 8 p.m. We retain this variable as z;, and regress the
other predictors individually as x5 for an OLS model based on n = 2 predictor variables.
Again we use an out of sample approach, and generate correlation coeflicients between ¢
and y. We then retain the combination of variables that yields the highest coefficient. This

procedure is repeated for n = 3, » = 4, and so on, fixing an additional variable at each
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Cumulative
Component Independent Variable Corr. Coeff.
x Percent of stations reporting rainfall 0.2747
29 Past twelve hour rainfall 0.3030
T3 12 hour sea level pressure anomaly tendency 0.3243
T4 Sea level pressure anomaly 0.3309
Ts U wind component 0.3332

Out-of-sample correlation coefficient: 0.3332

Table 8: Components of optimal predictor variable vector Xopt

step, until adding another predictor variable no longer increases the correlation coefficient
from the previous iteration. In this way we perform a stepwise regression in building an

OLS model to predict for twelve hour rainfall.

6.4 Results

By “optimizing” the OLS model in this manner, we find that the best vector of predictor
variables for predicting g is given by Xgpt, with n = 5. These components are shown in Table
8. It may seem odd that while the u wind component, which has a “stand alone” correlation
coefficient of 0.000 appears in Xgpt, 70 kPa relative humidity (correlation coefficient of
0.1659) does not. The predictor variables are not necessarily independent of each other
(they are chosen a priori), so the influence of 70 kPa relative humidity on predicting twelve
hour rain is assimilated in one or more components of Xgpt.

By stepwise regressing the components of xopt against twelve hour super-region rainfall,

we seek to predict for daytime convective rain. The components given in Table 8, however
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may be indicative of synoptic scale easterly waves described in Chapter 1. All components
in Xopt correlate positively with twelve hour rainfall. By looking at each component, we

can see how they may contribute to predicting synoptic scale rainfall.

¢ Percent of stations reporting rainfall. If a large percentage of stations in the
super-region reported rainfall during the past hour, a large scale easterly wave may

be forcing rainfall over the entire island.

o Past twelve hour rainfall. Convective scale rain events occur on the order of an
hour or two. Rainfall events that last the entire night (past twelve hours) may be on

a synoptic scale.

¢ 12 hour sea level pressure anomaly. Typical easterly waves resemble troughs that
bow northward. Riehl (1954) noted precipitation associated with these waves often
occurs on the eastern side of the trough axis, where the sea level pressure anomaly is

not at a minimum.

¢ 12 hour sea level pressure anomaly tendency. Rising anomalies occur east of
the trough axis as the wave passes to the west. Again, this is where we expect to find

rain associated with an easterly wave.

¢ U wind component. On the eastern side of the trough axis, the u wind component
increases as the axis passes to the west. Similarly, the v wind component decreases.
The addition of this predictor barely increases the cumulative correlation coefficient;

it is the weakest of the five predictor components.
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The components of the xopt vector merely suggest the ability to predict for rainfall asso-
clated with passing easterly waves, as opposed to diurnal afternoon convection. FEasterly
waves may enhance or suppress convection, so the separation of days based on synoptic
influence and non-synoptic influence is difficult. We take trepidation in identifying xopt as
synoptic predictors, especially in lieu of the small out of sample correlation coefficient.

In addition to calculating the correlation coefficient for the linear regression model based
upon independent variables Xqpt, we also calculate the root mean squared (r.m.s.) error
and the mean absolute error for the twelve hour, eleven station rainfall total. The r.m.s.

error and mean absolute error are given by Equations 10 and 11 respectively.

S5 -9)2/n

=1

(10)

r.m.s. error =

mean absolute error = Z K (11)
=1

The total number of observations is n, ¢ is the predicted twelve hour, eleven station rainfall
total, and y is the actual total. The r.m.s. error for twelve hour precipitation, 8 a.m. to 8
p.m., is 1.15 inches across all eleven stations. The mean absolute error for the same period
is 1.49 inches. We also predict for the nine-hour-lead three hour total and the six-hour-lead
six hour total. The predictor variable vector xopt is the same for these forecasts as it is
for the twelve hour forecast. We optimize only once based upon our choice of twelve hour
rainfall for dependent variable .

For comparison, we determine a persistence forecast for twelve hour rainfall by summing
rain amounts over eastern super-region stations for the past twelve hours. So the persistence

forecast is the rainfall that fell between 8 p.m. previous day and 8 a.m. current day. We
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use an out of sample approach, as we did in building the linear regression model. From the
hourly rainfall frequency (Figure 7), there is little indication of a diurnal rainfall frequency
for the three eastern regions. This suggests that the previous day’s rainfall amount (8 a.m.
to 8 p.m.) may be no better than overnight rainfall as a persistence forecast for the current
day’s rainfall total. For a ¢ of twelve hour rainfall, and persistence as the sole predictor,
the r.m.s. error is 1.22 inches, the mean absolute error is 1.58 inches, and the correlation
coefficient is 0.2584 (Table 9). The linear regression model, whose components are given
in Table 8, is more accurate than persistence for predicting rainfall during all three time
periods.

We also determine a climatology forecast by taking the mean twelve hour rainfall across
all eleven stations over the entire data set of randomly selected hours. Again, we use an
out of sample approach by removing one of the hours from the predictor variable set. Each
hour in the data set has a corresponding rainfall total for the previous twelve hours. It is
these corresponding totals that we average to get a climatology prediction. Choosing ¢ to
be twelve hour rainfall, and climatology as the sole predictor, the r.m.s. error is 2.03 inches
and the mean absolute error is 1.69 inches. Again, our simple linear regression model is
more accurate at predicting rainfall for all three time periods. These forecast results are

also shown in Table 9.
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9 hr. lead, 3 hr. total 6 hr. lead, 6 hr. total 12 hr. total
Linear Regression Model

Root mean squared error 1.27 1.25 1.15
Mean absolute error 0.65 1.12 1.49
Correlation coefficient 0.1887 0.2134 0.3332
Persistence

Root mean squared error 1.31 1.28 1.22
Mean absolute error 0.67 1.15 1.58
Correlation coefficient 0.1435 0.1858 0.2584
Climatology

Root mean squared error 1.99 1.93 2.03
Mean absolute error 0.71 1.21 1.69

Table 9: OLS regression model results. All errors are in inches.

6.5 Cross Validation

Elsner and Schmertmann (1994) emphasize that for out of sample hindcasts, the subset of
predictor variables must remain independent of the predicted (omitted) observation. In our
study, we developed an OLS model through stepwise linear regression. Since we optimized
our model in increments, we become dependent on the correlation coefficient with each step.
In other words, we know that the percent of stations reporting rain is the best choice for
x1 because it gives us the highest correlation coefficient. This is knowledge we do not have
in developing a model in real time since the predicted hour has not yet occurred.
Additional cross validation is probably warranted, though its further application is not
straightforward. If we permute all eleven a priori independent variables in building a
linear regression model, we may cross validate this algorithm by removing two hours for each

permutation. The first hour is removed to cross validate the algorithm of permutations, and
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an out of sample linear regression model produced by the algorithm predicts for the second
hour removed. There exist millions of such permutations. Instead we choose a progressive,
somewhat subjective method of building our forecast model based on maximum correlation.
The cross-validation of our subjectively based algorithm is not easily conceptualized, even
though our model is still developed out of sample. We recognize this as a caveat for calling

our model building method truly cross validated.



Chapter 7

Summary and Conclusion

Daytime convective patterns in Puerto Rico during the summer may be divided into six
rainfall regions through factor analysis. Since the leading six eigenvalues are significant with
respect to white noise, there is evidence of physical mechanisms underlying these six factors.
The six regions suggest important mechanisms that force precipitation over the island and
indicate that the factor analysis model is sensitive to variations in weather regimes. For
example, factors one and five are likely related to convection forced by El Yunque, an isolated
mountain to the southeast of San Juan (LaSeur, personal communication), whereas factors
two, four and six result from inland sea breeze penetration and/or sea breeze interaction
with the interior mountains. Rather than attempting to develop a prediction scheme for
a single station, we can build a model that will predict for a convective scale. Whereas a
shower may miss a particular station, it will not miss the entire region.

These six regions may further be divided into an eastern region and a western region. We
did this based upon hourly rainfall frequency for each of the six factors. The communality
of regions within these two larger regions are descriptive of phenomena existing on differing

time scales. This is an important consideration in developing a prediction scheme since the
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western regions exhibit a strong diurnal frequency change while the eastern regions do not.
By regionalizing Puerto Rico based upon its rainfall signature, we made the problem of
predicting convective rainfall during the summer more tractable.

We built a prediction model by selecting from a group of a priori variables a subset of
predictors that correlated with twelve hour rainfall total. Accounting for diurnal frequency
differences described above, we incorporated only stations in the eastern super-region of the
island into our data set. We chose the eastern super-region because San Juan, the major
city and data collection site in Puerto Rico, lies within this part of the island. The simple
linear regression model devised in this study is more accurate than both climatology and
persistence for predicting daytime convective rainfall. Nevertheless, an r.m.s. error of 1.15
inches over the entire eastern super-region is an average of 0.10 inches per station. An out
of sample correlation coeflicient of 0.3332 is not an indicator of a highly reliable statistical
forecast model.

This study is limited by the number of available rainfall and surface data stations over
Puerto Rico, which fixes the spatial resolution of the analysis. A greater spatial resolution
will likely alter the above results since the distribution of variance will reflect even more
local scale phenomena. Although the eastern stations and western stations share common
diurnal rainfall frequency patterns, there are subtle differences between each station. Within
a super-region, amplitudes of maximum frequency may be out of phase with each other by
an hour of two.

Additional surface data exists from the same NCAR data set, in particular for Roo-

sevelt Roads, Ponce, and Ramey Air Force Base. These stations do not have the historical
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extent that the San Juan WSFO does, and only Roosevelt Roads lies within the eastern
super-region. Additional research into building a prediction model that incorporates both
Roosevelt Roads and San Juan may be worthy of future investigation.

Forecast guidance as it exists now consists primarily of the National Meteorological
Center (NMC) Medium Range Forecast Model (MRF), satellite interpretation, and synoptic
analyses. NMC attempted to develop Model Output Statistics (MOS) for San Juan, but it
performed less accurately than the MRF during the summertime (Rafael Mojica, personal
communication). The purpose of developing a linear regression model in this study is not
to build a “stand alone” model for forecasting daytime rainfall during the summer, but to
provide an additional tool at the discretion of forecasters. Indeed, this model is preliminary,
not definitive. The value of the linear regression model is to show how the regionalization of

Puerto Rico, based on its convective rainfall history, may improve the accuracy of forecasts.



Appendix A

List of Hurricane Hours Removed

Hurricanes, tropical storms, and named tropical depressions are removed from the data
set for guidance considerations. Any such storm that passed within 500 kilometers of
Puerto Rico is thought to possibly influence the island’s weather on a synoptic scale and is
consequently removed. Only hours for which the tropical cyclone is within 500 kilometers

of Puerto Rico are extracted from the data set.
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Tropical cyclone

Christine
Fifi
Eloise
FEmmy
Juliet
David
Allen
Gert
Debby
Arthur
Gloria
Danielle
Emily

Year
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First hour removed

1973
1974
1975
1976
1978
1979
1980
1981
1982
1984
1985
1986
1987

September 3, 0000 UTC
September 14, 1200 UTC
September 14, 0000 UTC
August 23, 1200 UTC
October 8, 0000 UTC
August 29, 0000 UTC
August 4, 1200 UTC
September 7, 0000 UTC
September 13, 1200 UTC
September 2, 1200 UTC
September 23, 0000 UTC
September 8, 0000 UTC
September 21, 0000 UTC

Last hour removed

September 4, 1200 UTC
September 15, 1200 UTC
September 17, 1200 UTC
August 23, 0000 UTC
October 10, 1200 UTC
August 31, 0000 UTC
August 5, 1200 UTC
September 9, 1200 UTC
September 14, 0000 UTC
September 4, 1200 UTC
September 24, 0000 UTC
September 9, 1200 UTC
September 23, 1200 UTC

Table 10: Hurricanes, tropical storms, and named tropical depressions removed from the
data set.



Appendix B

Hourly Rainfall Climatology

The hourly rainfall climatology for the twenty-two stations in Puerto Rico is shown in this
appendix. Stations are arranged alphabetically within the two “super-regions.” The first
eleven stations represent the eastern third of Puerto Rico, and the second eleven stations
represent the western part of the island.

Local time is shown on the abscissa, and rainfall amount is shown on the ordinate.
Hours 24 through 30 represent “wraparound” times corresponding to midnight through 6
a.m. Within each hour, rainfall amounts are ordered greatest to least. The top curve is the
maximum rainfall amount for each hour. The second curve is the 99.9th percent rainfall
value, the third curve is the 99th percent rainfall value, and the bottom curve is the 97th

percent rainfall value.
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Rainfall Climatology: Gurabo
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Rainfall Climatology: Las Piedras
Wet Seasons, July 1973 - June 1988
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Rainfall Climatology: Pena Pobre-Naguabo
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Rainfall Climatology: San Juan WSFO
Wet Seasons, July 1973 - June 1988
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Rainfall Climatology: Yabucoa
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Rainfall Climatology: Botijasl
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Rainfall Climatology: Cayey

Wet Seasons, July 1973 - June 1988
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Rainfall Climatology: Corozal Substation
Wet Seasons, July 1973 - June 1988
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Rainfall Climatology: Maricao
Wet Seasons, July 1973 - June 1988
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Rainfall Climatology: Ponce
Wet Seasons, July 1973 - June 1988
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Appendix C

Frequency of Rainfall Events

The frequency of rainfall events for each of the twenty two rainfall recording stations in
Puerto Rico is given in this appendix. A rainfall event is any hour in which that station
recorded an amount greater than a trace. Local time is shown on the abscissa. Hours 24
through 30 represent “wraparound” times corresponding to midnight through 6 a.m. The

number of events are shown on the ordinate.
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Frequency of Rainfall Events: Cubuy
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Frequency of Rainfall Events: Gurabo
Wet Seasons, July 1973 - June 1988
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Frequency of Rainfall Events: Pena Pobre-Naguabo
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Frequency of Rainfall Events: San Juan WSFO
Wet Seasons, July 1973 - June 1988

4 6 8 10 12 14 16 18 20 22 24 26 28
Local Time (AST)

Frequency of Rainfall Events: San Lorenzo
Wet Seasons, July 1973 - June 1988

4 6 8 10 12 14 16 18 20 22 24 26 28
Local Time (AST)




Number of Days With Event

Number of Days With Event

360.0

320.0

280.0

240.0

200.0

160.0

120.0

80.0

40.0

0.0

360.0

320.0

280.0

240.0

200.0

160.0

120.0

80.0

40.0

0.0

67

Frequency of Rainfall Events: Yabucoa
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Frequency of Rainfall Events: Botijasl
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Frequency of Rainfall Events: Cayey
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Frequency of Rainfall Events: Corozal Substation
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Frequency of Rainfall Events: Maricao
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Frequency of Rainfall Events: Ponce
Wet Seasons, July 1973 - June 1988
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